DocumentCode :
3116755
Title :
Maximum Entropy Approximation for Kernel Machines
Author :
Ozertem, Umut ; Erdogmus, Deniz
Author_Institution :
CSEE Dept., Oregon Health & Sci. Univ., Oregon, OH
fYear :
2006
fDate :
6-8 Sept. 2006
Firstpage :
349
Lastpage :
352
Abstract :
Kernel machines are widely used in pattern recognition, exploratory data analysis, and statistical signal processing, due to their effectiveness of modeling nonlinear dependencies in the data. The computational burden in evaluating forward functions in testing is the main drawback for kernel machines, especially in high dimensional large training set situations. We present a separable maximum entropy approximation for kernel machines that reduce the computational load for forward function evaluation. The performance of the approximation is demonstrated on kernel-based discriminative nonlinear projections on benchmark datasets.
Keywords :
convex programming; data analysis; entropy; pattern recognition; signal processing; convex optimization; data nonlinear dependency modeling; exploratory data analysis; forward functions; kernel machines; kernel-based discriminative nonlinear projection; maximum entropy approximation; pattern recognition; statistical signal processing; Clustering algorithms; Data analysis; Entropy; Function approximation; Kernel; Partitioning algorithms; Pattern recognition; Support vector machines; Testing; Training data;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Machine Learning for Signal Processing, 2006. Proceedings of the 2006 16th IEEE Signal Processing Society Workshop on
Conference_Location :
Arlington, VA
ISSN :
1551-2541
Print_ISBN :
1-4244-0656-0
Electronic_ISBN :
1551-2541
Type :
conf
DOI :
10.1109/MLSP.2006.275573
Filename :
4053672
Link To Document :
بازگشت