DocumentCode :
3116920
Title :
Independently Coupled HMM Switching Classifier for a Bimodel Brain-Machine Interface
Author :
Darmanjian, Shalom ; Kim, Sung-Phil ; Nechyba, Michael C. ; Principe, Jose ; Wessberg, Johan ; Nicolelis, Miguel A L
Author_Institution :
Dept. of Electr. & Comput. Eng., Univ. of Florida, Gainesville, FL
fYear :
2006
fDate :
6-8 Sept. 2006
Firstpage :
379
Lastpage :
384
Abstract :
Our initial attempt to develop a switching classifier used vector quantization to compress the multi-dimensional neural data recorded from multiple cortical areas of an owl monkey, into a discrete symbol for use in a single hidden Markov model (HMM) or HMM chain. After classification, different neural data is delegated to local linear predictors when the monkey´s arm is moving and when it is at rest. This multiple-model approach helped to validate the hypothesis that by switching the neuronal firing data, the performance of the final linear prediction is improved. In this paper, we take the idea of using multiple models a step further and apply the concept to our actual switching classifier. This new structure uses an ensemble of single neural-channel HMM chains to form an independently coupled hidden Markov model (ICHMM). Consequently, this classifier takes advantage of the neural firing properties and allows for the removal of vector quantization while jointly improving the classification performance and the subsequent linear prediction of the trajectory.
Keywords :
biology computing; brain; hidden Markov models; neural nets; neurophysiology; pattern classification; user interfaces; vector quantisation; HMM chain; bimodel brain-machine interface; hidden Markov model; independently coupled HMM switching classifier; multidimensional neural data; multiple cortical areas; neuronal firing data; owl monkey; vector quantization; Brain computer interfaces; Brain modeling; Computer science; Hidden Markov models; Pattern recognition; Predictive models; Robots; Switches; Trajectory; Vector quantization;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Machine Learning for Signal Processing, 2006. Proceedings of the 2006 16th IEEE Signal Processing Society Workshop on
Conference_Location :
Arlington, VA
ISSN :
1551-2541
Print_ISBN :
1-4244-0656-0
Electronic_ISBN :
1551-2541
Type :
conf
DOI :
10.1109/MLSP.2006.275579
Filename :
4053678
Link To Document :
بازگشت