DocumentCode :
3118450
Title :
Electro-explosive fuse optimization for Helical Flux compression generator using a non-explosive test bed
Author :
McCauley, D. ; Belt, D. ; Mankowski, J. ; Dickens, J. ; Neuber, A. ; Kristiansen, M.
Author_Institution :
Center for Pulsed Power and Power Electronics, Departments of Electrical & Computer Engineering and Physics, Texas Tech University, Lubbock, 79409-3102 USA
Volume :
2
fYear :
2007
fDate :
17-22 June 2007
Firstpage :
1018
Lastpage :
1021
Abstract :
Helical Flux Compression Generators (HFCG) of 50 mm form factor have been shown to produce a maximum energy deposit of 3 kJ into a 3 μH inductor from a seed current. A large dI/dt into a coupled load is possible when an electro-explosive fuse is used. Previous work with a non-optimized fuse has produced ∼100 kV into a 15 Ω load which leads into a regime relevant for High Power Microwave (HPM) systems. It is expected that ∼300 kV can be achieved with the present 2 stage HFCG driving an inductive storage system with an electro-exploding fuse. In order to optimize the electro-explosive fuse design, a non-explosive test bed, which closely simulates the 45 kA HFCG output, is used. To optimize the fuse, effects of fuse material, fuse length, and fuse shape will be examined as well as the effects of various quenching materials. Additionally, to maximize the output voltage and minimize the fuse recovery time, we are optimizing the length of the fuse wire. For shorter fuse lengths, we are optimizing fuse shape as well as fuse length to find the best fuse recovery time. By optimizing the individual parameters of an electro-explosive fuse, the fuse as a whole will be optimized to produce maximum output voltage when used with an HFCG.
Keywords :
Electronic equipment testing; Fuses; Inductors; Power generation; Pulse generation; Shape; Silver; Sulfur hexafluoride; Voltage; Wire;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Pulsed Power Conference, 2007 16th IEEE International
Conference_Location :
Albuquerque, NM
Print_ISBN :
978-1-4244-0913-6
Electronic_ISBN :
978-1-4244-0914-3
Type :
conf
DOI :
10.1109/PPPS.2007.4652362
Filename :
4652362
Link To Document :
بازگشت