Title :
Convergence of generalized linear coordinate-descent message-passing for quadratic optimization
Author :
Zhang, Guoqiang ; Heusdens, Richard
Author_Institution :
Signal & Inf. Process. Lab., Delft Univ. of Technol., Delft, Netherlands
Abstract :
We study the generalized linear coordinate-descent (GLiCD) algorithm for the quadratic optimization problem. As an extension of the linear coordinate-descent (LiCD) algorithm, the GLiCD algorithm incorporates feedback from last iteration in generating new messages. We show that if the amount of feedback signal from last iteration is above a threshold and the GLiCD algorithm converges, it computes the optimal solution. Based on the result, we further show that if the feedback signal is large enough, the GLiCD algorithm is guaranteed to converge.
Keywords :
convergence; feedback; iterative methods; message passing; quadratic programming; GLiCD algorithm; LiCD algorithm; convergence; feedback signal; generalized linear coordinate-descent message-passing; linear coordinate-descent algorithm; message generation; quadratic optimization; Algorithm design and analysis; Convergence; Jacobian matrices; Optimization; Signal processing algorithms; Symmetric matrices; Vectors;
Conference_Titel :
Information Theory Proceedings (ISIT), 2012 IEEE International Symposium on
Conference_Location :
Cambridge, MA
Print_ISBN :
978-1-4673-2580-6
Electronic_ISBN :
2157-8095
DOI :
10.1109/ISIT.2012.6283649