• DocumentCode
    3122872
  • Title

    An improved robust fuzzy clustering algorithm

  • Author

    Melek, William W. ; Emami, M. Reza ; Goldenberg, Andrew A.

  • Author_Institution
    Dept. of Mech. & Ind. Eng., Toronto Univ., Ont., Canada
  • Volume
    3
  • fYear
    1999
  • fDate
    22-25 Aug. 1999
  • Firstpage
    1261
  • Abstract
    Fuzzy-c-means (FCM) and hard clustering algorithms are the most common tools for data partitioning. However, these clustering algorithms may fail completely in the presence of noise. We introduce a robust noise rejection clustering algorithm based on a combination of techniques that treat the FCM weak points with a traditional noise rejection algorithm. Unlike the traditional FCM, the proposed algorithm is a powerful tool for partitioning the data in the presence of noise (outliers).
  • Keywords
    fuzzy set theory; noise; pattern clustering; data partitioning; noise rejection clustering algorithm; robust fuzzy clustering algorithm; Clustering algorithms; Clustering methods; Fuzzy sets; Laboratories; Noise reduction; Noise robustness; Partitioning algorithms; Phase change materials; Robotics and automation; Service robots;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Fuzzy Systems Conference Proceedings, 1999. FUZZ-IEEE '99. 1999 IEEE International
  • Conference_Location
    Seoul, South Korea
  • ISSN
    1098-7584
  • Print_ISBN
    0-7803-5406-0
  • Type

    conf

  • DOI
    10.1109/FUZZY.1999.790082
  • Filename
    790082