DocumentCode :
3123976
Title :
Upper-bound multiple fuzzy frequent-pattern trees
Author :
Hong, Tzung-Pei ; Lin, Chun-Wei ; Lin, Tsung-Ching ; Pan, Shing-Tai
Author_Institution :
Dept. of Comput. Sci. & Inf. Eng., Nat. Univ. of Kaohsiung, Kaohsiung, Taiwan
fYear :
2011
fDate :
27-30 June 2011
Firstpage :
218
Lastpage :
222
Abstract :
In this paper, a novel two-phase fuzzy mining approach based on the designed upper-bound multiple fuzzy frequent-pattern (UBMFFP) tree is proposed to obtain all fuzzy frequent itemsets from a quantitative database. It prunes unpromising itemsets in the first phase, and then finds the actual fuzzy frequent itemsets in the second phase. Experimental results indicate that the proposed approach has better performance than some previous ones.
Keywords :
data mining; fuzzy set theory; trees (mathematics); UBMFFP tree; fuzzy frequent itemset; quantitative database; two-phase fuzzy mining; upper-bound multiple fuzzy frequent-pattern trees; Algorithm design and analysis; Association rules; Conferences; Fuzzy sets; Itemsets; FP tree; fuzzy data mining; fuzzy frequent itemsets; fuzzy set; two-phase mining;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Fuzzy Systems (FUZZ), 2011 IEEE International Conference on
Conference_Location :
Taipei
ISSN :
1098-7584
Print_ISBN :
978-1-4244-7315-1
Electronic_ISBN :
1098-7584
Type :
conf
DOI :
10.1109/FUZZY.2011.6007678
Filename :
6007678
Link To Document :
بازگشت