DocumentCode :
3124393
Title :
Patent Maintenance Recommendation with Patent Information Network Model
Author :
Jin, Xin ; Spangler, Scott ; Chen, Ying ; Cai, Keke ; Ma, Rui ; Zhang, Li ; Wu, Xian ; Han, Jiawei
Author_Institution :
Dept. of Comput. Sci., Univ. of Illinois at Urbana Champaign, Champaign, IL, USA
fYear :
2011
fDate :
11-14 Dec. 2011
Firstpage :
280
Lastpage :
289
Abstract :
Patents are of crucial importance for businesses, because they provide legal protection for the invented techniques, processes or products. A patent can be held for up to 20 years. However, large maintenance fees need to be paid to keep it enforceable. If the patent is deemed not valuable, the owner may decide to abandon it by stopping paying the maintenance fees to reduce the cost. For large companies or organizations, making such decisions is difficult because too many patents need to be investigated. In this paper, we introduce the new patent mining problem of automatic patent maintenance prediction, and propose a systematic solution to analyze patents for recommending patent maintenance decision. We model the patents as a heterogeneous time-evolving information network and propose new patent features to build model for a ranked prediction on whether to maintain or abandon a patent. In addition, a network-based refinement approach is proposed to further improve the performance. We have conducted experiments on the large scale United States Patent and Trademark Office (USPTO) database which contains over four million granted patents. The results show that our technique can achieve high performance.
Keywords :
data mining; decision support systems; organisational aspects; patents; recommender systems; United States patent and trademark office database; automatic patent maintenance prediction; businesses; invented techniques; legal protection; maintenance fees; organizations; patent information network model; patent maintenance decision; patent maintenance recommendation; patent mining problem; Companies; Feature extraction; Maintenance engineering; Patents; Predictive models; Writing; patent information network; patent maintenance; patent mining; prediction; ranking;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Data Mining (ICDM), 2011 IEEE 11th International Conference on
Conference_Location :
Vancouver,BC
ISSN :
1550-4786
Print_ISBN :
978-1-4577-2075-8
Type :
conf
DOI :
10.1109/ICDM.2011.116
Filename :
6137232
Link To Document :
بازگشت