DocumentCode :
3124567
Title :
Self-dual repeated root cyclic and negacyclic codes over finite fields
Author :
Guenda, K. ; Gulliver, T.A.
Author_Institution :
Fac. of Math., Univ. of Sci. & Technol. of Algiers, Algiers, Algeria
fYear :
2012
fDate :
1-6 July 2012
Firstpage :
2904
Lastpage :
2908
Abstract :
In this paper we investigate repeated root cyclic and negacyclic codes of length pr m over Fps with (m, p) = 1. In the case p odd, we give necessary and sufficient conditions on the existence of negacyclic self-dual codes. When m = 2m´ with m´ odd, we characterize the codes in terms of their generator polynomials. This provides simple conditions on the existence of self-dual negacyclic codes, and generalizes the results of Dinh [6]. We also answer an open problem concerning the number of self-dual cyclic codes given by Jia et al. [11].
Keywords :
cyclic codes; polynomials; finite fields; generator polynomials; negacyclic self-dual codes; self-dual negacyclic codes; self-dual repeated root cyclic codes; Cryptography; Educational institutions; Electronic mail; Galois fields; Generators; Linear code; Polynomials;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information Theory Proceedings (ISIT), 2012 IEEE International Symposium on
Conference_Location :
Cambridge, MA
ISSN :
2157-8095
Print_ISBN :
978-1-4673-2580-6
Electronic_ISBN :
2157-8095
Type :
conf
DOI :
10.1109/ISIT.2012.6284057
Filename :
6284057
Link To Document :
بازگشت