Title :
Monocular perception of biological motion-detection and labeling
Author :
Song, Yang ; Goncalves, Luis ; Bernardo, Enrico Di ; Perona, Pietro
Author_Institution :
California Inst. of Technol., Pasadena, CA, USA
Abstract :
Computer perception of biological motion is key to developing convenient and powerful human-computer interfaces. Successful body tracking algorithms have been developed; however initialization is done by hand. We propose a method for detecting a moving human body and for labeling its parts automatically. It is based on maximizing the joint probability density function (PDF) of the position and velocity of the body parts. The PDF is estimated from training data. Dynamic programming is used for calculating efficiently the best global labeling on an approximation of the PDF. The computational cost is on the order of N 4 where N is the number of features detected. We explore the performance of our method with experiments carried on a variety of periodic and non-periodic body motions viewed monocularly for a total of approximately 30,000 frames. Point-markers were strapped to the joints of the subject for facilitating image analysis. We find an average of 2.3% labeling error; the experiments also suggest a high degree of viewpoint-invariance
Keywords :
dynamic programming; motion estimation; performance evaluation; user interfaces; biological motion; dynamic programming; human-computer interfaces; image analysis; initialization; labelling; monocular perception; performance; probability density function; Biology computing; Computational efficiency; Computer interfaces; Computer vision; Dynamic programming; Humans; Joints; Labeling; Probability density function; Training data;
Conference_Titel :
Computer Vision, 1999. The Proceedings of the Seventh IEEE International Conference on
Conference_Location :
Kerkyra
Print_ISBN :
0-7695-0164-8
DOI :
10.1109/ICCV.1999.790304