DocumentCode :
3128510
Title :
Learning low-level vision
Author :
Freeman, William T. ; Pasztor, Egon C.
Author_Institution :
Mitsubishi Electr. Res. Lab., Cambridge, MA, USA
Volume :
2
fYear :
1999
fDate :
1999
Firstpage :
1182
Abstract :
We show a learning-based method for low-level vision problems-estimating scenes from images. We generate a synthetic world of scenes and their corresponding rendered images. We model that world with a Markov network, learning the network parameters from the examples. Bayesian belief propagation allows us to efficiently find a local maximum of the posterior probability for the scene, given the image. We call this approach VISTA-Vision by Image/Scene TrAining. We apply VISTA to the “super-resolution” problem (estimating high frequency details from a low-resolution image), showing good results. For the motion estimation problem, we show figure/ground discrimination, solution of the aperture problem, and filling-in arising from application of the same probabilistic machinery
Keywords :
Bayes methods; Markov processes; computer vision; motion estimation; rendering (computer graphics); Bayesian belief propagation; Markov network; aperture problem; learning-based method; low-level vision learning; posterior probability; probabilistic machinery; rendered images; synthetic world; Apertures; Bayesian methods; Belief propagation; Frequency estimation; Image generation; Layout; Learning systems; Markov random fields; Motion estimation; Rendering (computer graphics);
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computer Vision, 1999. The Proceedings of the Seventh IEEE International Conference on
Conference_Location :
Kerkyra
Print_ISBN :
0-7695-0164-8
Type :
conf
DOI :
10.1109/ICCV.1999.790414
Filename :
790414
Link To Document :
بازگشت