DocumentCode :
3131184
Title :
Polynomials and computing functions of correlated sources
Author :
Huang, Sheng ; Skoglund, Mikael
Author_Institution :
Sch. of Electr. Eng., KTH R. Inst. of Technol., Stockholm, Sweden
fYear :
2012
fDate :
1-6 July 2012
Firstpage :
771
Lastpage :
775
Abstract :
We consider the source coding problem of computing functions of correlated sources, which is an extension of the Slepian-Wolf coding problem. We observe that all the discrete functions are in fact restrictions of polynomial functions over some finite field. Based on this observation, we demonstrate how to use Elias´ Lemma to enlarge the coding rate region (compared to the Slepian-Wolf region) for a certain class of polynomial functions. We present a classification result about polynomial functions regarding this coding problem. The result is conclusive in the two-sources scenario and, in fact, gives another interpretation of a result by Han and Kobayashi [1, Theorem 1].
Keywords :
polynomials; source coding; Elias lemma; Slepian-Wolf coding problem; coding rate region; correlated source computing function; discrete functions; finite field; polynomial functions; source coding problem; Decoding; Markov processes; Polynomials; Random variables; Source coding;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information Theory Proceedings (ISIT), 2012 IEEE International Symposium on
Conference_Location :
Cambridge, MA
ISSN :
2157-8095
Print_ISBN :
978-1-4673-2580-6
Electronic_ISBN :
2157-8095
Type :
conf
DOI :
10.1109/ISIT.2012.6284664
Filename :
6284664
Link To Document :
بازگشت