DocumentCode :
3131860
Title :
An algorithm for list decoding number field codes
Author :
Biasse, Jean-François ; Quintin, Guillaume
Author_Institution :
Dept. of Comput. Sci., Univ. of Calgary, Calgary, AB, Canada
fYear :
2012
fDate :
1-6 July 2012
Firstpage :
91
Lastpage :
95
Abstract :
We present an algorithm for list decoding codewords of algebraic number field codes in polynomial time. This is the first explicit procedure for decoding number field codes whose construction were previously described by Lenstra [1] and Guruswami [2]. We rely on a new algorithm for computing the Hermite normal form of the basis of an OK-module due to Biasse and Fieker [3] where OK is the ring of integers of a number field K.
Keywords :
Reed-Solomon codes; algebraic codes; OK-module; Reed-Solomon codes; algebraic number field codes; list decoding codewords; list decoding number field codes; polynomial time; Computer science; Context; Decoding; Educational institutions; Polynomials; Reed-Solomon codes;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information Theory Proceedings (ISIT), 2012 IEEE International Symposium on
Conference_Location :
Cambridge, MA
ISSN :
2157-8095
Print_ISBN :
978-1-4673-2580-6
Electronic_ISBN :
2157-8095
Type :
conf
DOI :
10.1109/ISIT.2012.6284696
Filename :
6284696
Link To Document :
بازگشت