DocumentCode :
3131955
Title :
American sign language fingerspelling recognition with phonological feature-based tandem models
Author :
Taehwan Kim ; Livescu, Karen ; Shakhnarovich, Greg
Author_Institution :
Toyota Technol. Inst. at Chicago, Chicago, IL, USA
fYear :
2012
fDate :
2-5 Dec. 2012
Firstpage :
119
Lastpage :
124
Abstract :
We study the recognition of fingerspelling sequences in American Sign Language from video using tandem-style models, in which the outputs of multilayer perceptron (MLP) classifiers are used as observations in a hidden Markov model (HMM)-based recognizer. We compare a baseline HMM-based recognizer, a tandem recognizer using MLP letter classifiers, and a tandem recognizer using MLP classifiers of phonological features. We present experiments on a database of fingerspelling videos. We find that the tandem approaches outperform an HMM-based baseline, and that phonological feature-based tandem models outperform letter-based tandem models.
Keywords :
feature extraction; handicapped aids; hidden Markov models; image classification; multilayer perceptrons; sign language recognition; video databases; American sign language fingerspelling recognition; MLP classifiers; MLP letter classifiers; baseline HMM-based recognizer; deaf individuals; fingerspelling video database; hidden Markov model-based recognizer; multilayer perceptron classifiers; phonological feature-based tandem models; tandem recognizer; Error analysis; Gesture recognition; Handicapped aids; Hidden Markov models; Manuals; Speech recognition; Training; American Sign Language; fingerspelling; phonological features; tandem models;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Spoken Language Technology Workshop (SLT), 2012 IEEE
Conference_Location :
Miami, FL
Print_ISBN :
978-1-4673-5125-6
Electronic_ISBN :
978-1-4673-5124-9
Type :
conf
DOI :
10.1109/SLT.2012.6424208
Filename :
6424208
Link To Document :
بازگشت