DocumentCode :
3132018
Title :
Web Usage Mining with Variable Precision Rough Set Approach
Author :
Feng, Lin ; Guan, Baohua
Author_Institution :
Sichuan Key Lab. of Visualization Comput. & Virtual Reality, Sichuan Normal Univ., Chengdu, China
fYear :
2011
fDate :
8-9 Oct. 2011
Firstpage :
204
Lastpage :
206
Abstract :
The rich Web information makes the Web users to be drowned in the huge Web data. This paper proposes a new navigation approach termed WUMVPRSM (Web Usage Mining based on Variable Precision Rough Set Model) for Web users browsing a website. First, Log training data sets are reduced using attribute reduction module by rough set. And then, a reduced Log data set is trained to create a rough classifier. The final classification result for identifying Web user is obtained according to rough decision rules. Simulation results illustrate the efficiency of the proposed approaches.
Keywords :
Internet; Web sites; pattern classification; rough set theory; WUMVPRSM; Web information; Web usage mining based on variable precision rough set model; Web users; Website; attribute reduction module; log training data sets; navigation approach; rough classifier; rough decision rules; Accuracy; Cleaning; Educational institutions; Navigation; Service oriented architecture; Web mining; Rough set; attribute reduction; decision rule; variable precision rough set model;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Knowledge Acquisition and Modeling (KAM), 2011 Fourth International Symposium on
Conference_Location :
Sanya
Print_ISBN :
978-1-4577-1788-8
Type :
conf
DOI :
10.1109/KAM.2011.61
Filename :
6137615
Link To Document :
بازگشت