DocumentCode :
3134049
Title :
Accessing and visualizing scientific spatiotemporal data
Author :
Katz, Daniel S. ; Bergou, AAttila ; Berriman, G. Bruce ; Block, Gary L. ; Collier, Jim ; Curkendall, David W. ; Good, John ; Husman, Laura ; Jacob, Joseph C. ; Laity, Anastasia ; Li, P. Peggy ; Miller, Craig ; Prince, Tom ; Siegel, Herb ; Williams, Roy
Author_Institution :
Jet Propulsion Lab., California Inst. of Technol., Pasadena, CA, USA
fYear :
2004
fDate :
21-23 June 2004
Firstpage :
107
Lastpage :
110
Abstract :
This paper discusses work done by JPL´s Parallel Applications Technologies Group in helping scientists access and visualize very large data sets through the use of multiple computing resources, such as parallel supercomputers, clusters, and grids. These tools do one or more of the following tasks: visualize local data sets for local users, visualize local data sets for remote users, and access and visualize remote data sets. The tools are used for various types of data, including remotely sensed image data, digital elevation models, astronomical surveys, etc. The paper attempts to pull some common elements out of these tools that may be useful for others who have to work with similarly large data sets.
Keywords :
data visualisation; query processing; scientific information systems; temporal databases; very large databases; visual databases; clusters; data access; data visualization; grid; large data sets; multiple computing resources; parallel supercomputers; remote data set; scientific spatiotemporal data; Concurrent computing; Data visualization; Grid computing; Laboratories; NASA; Optical computing; Propulsion; Space technology; Spatiotemporal phenomena; Supercomputers;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Scientific and Statistical Database Management, 2004. Proceedings. 16th International Conference on
ISSN :
1099-3371
Print_ISBN :
0-7695-2146-0
Type :
conf
DOI :
10.1109/SSDM.2004.1311198
Filename :
1311198
Link To Document :
بازگشت