DocumentCode :
3137816
Title :
Joint estimation of linear and nonlinear parameters using reduced sufficient statistics
Author :
Iltis, Ronald A.
Author_Institution :
Dept. of Electr. & Comput. Eng., California Univ., Santa Barbara, CA, USA
Volume :
1
fYear :
1996
fDate :
3-6 Nov. 1996
Firstpage :
161
Abstract :
A new algorithm is presented for the joint estimation of linear and nonlinear parameters of a deterministic signal embedded in additive Gaussian noise. The algorithm is a modification of the reduced sufficient statistics (RSS) method introduced by Kulhavy (1990), which estimates the posterior parameter density via minimization of the cross-entropy. In the additive Gaussian noise measurement model, the modified RSS algorithm employs a parallel bank of least-squares type estimators for the linear parameters, coupled with an approximate minimum variance estimate for the nonlinear parameter. Simulation results are presented for the problem of estimating parameters of a chirp signal embedded in multipath, and the averaged squared error (ASE) of the parameter estimates is compared with the Cramer-Rao bound.
Keywords :
Gaussian noise; least mean squares methods; minimum entropy methods; parameter estimation; signal processing; statistical analysis; Cramer-Rao bound; RSS method; additive Gaussian noise; approximate minimum variance estimate; averaged squared error; chirp signal; cross-entropy; deterministic signal; joint estimation; least-squares type estimators; linear parameters; minimization; multipath; nonlinear parameters; posterior parameter density; reduced sufficient statistics; reduced sufficient statistics method; Additive noise; Communication networks; Context modeling; Entropy; Gaussian noise; Minimization methods; Noise measurement; Parameter estimation; Statistics; Vectors;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Signals, Systems and Computers, 1996. Conference Record of the Thirtieth Asilomar Conference on
Conference_Location :
Pacific Grove, CA, USA
ISSN :
1058-6393
Print_ISBN :
0-8186-7646-9
Type :
conf
DOI :
10.1109/ACSSC.1996.600849
Filename :
600849
Link To Document :
بازگشت