Title :
Spike-Based MAX Networks for Nonlinear Pooling in Hierarchical Vision Processing
Author :
Folowosele, Fopefolu O. ; Vogelstein, R. Jacob ; Etienne-Cummings, R.
Author_Institution :
Johns Hopkins Univ., Baltimore
Abstract :
Complex cells in the visual cortex utilize a maximum (MAX) operation to pool the outputs of simple cells to achieve feature specificity and invariance. We demonstrate a biologically-plausible MAX network for nonlinear pooling in hardware, using a reconfigurable multichip address event representation based VLSI system. With this implementation we have shown that we can implement simple and advanced stages of visual processing on the same chip and are one step closer to constructing an autonomous, continuous-time, biologically- plausible hierarchical model of visual information processing using large-scale arrays of identical silicon neurons.
Keywords :
VLSI; computer vision; neural chips; pattern recognition; biologically plausible MAX network; feature invariance; feature specificity; hierarchical vision processing; large scale silicon neuron arrays; multichip address event representation; nonlinear pooling; reconfigurable VLSI system; spike based MAX network; visual cortex cells; visual information processing; Biological system modeling; Brain modeling; Computer architecture; Hardware; Large-scale systems; Neuromorphics; Neurons; Retina; Spatial filters; Transceivers; Complex cells; MAX network; integrate-and-fire array transceiver; visual cortex;
Conference_Titel :
Biomedical Circuits and Systems Conference, 2007. BIOCAS 2007. IEEE
Conference_Location :
Montreal, Que.
Print_ISBN :
978-1-4244-1524-3
Electronic_ISBN :
978-1-4244-1525-0
DOI :
10.1109/BIOCAS.2007.4463313