DocumentCode :
313841
Title :
Nonlinear Kalman filtering using fuzzy local linear models
Author :
McGinnity, Shaun ; Irwin, George
Author_Institution :
Dept. of Electr. & Electron. Eng., Queen´´s Univ., Belfast, UK
Volume :
5
fYear :
1997
fDate :
4-6 Jun 1997
Firstpage :
3299
Abstract :
A local linear modelling based approach to nonlinear state estimation is introduced. The local models are defined using the Sugeno fuzzy inference framework and constructed using neurofuzzy modelling techniques. Two new fuzzy Kalman filters, which do not require further linearisation nor analytical system equations, are derived. Simulation results presented for a highly nonlinear target tracking problem suggest potential improvements when compared with conventional extended Kalman filtering
Keywords :
Kalman filters; filtering theory; fuzzy logic; fuzzy neural nets; inference mechanisms; modelling; nonlinear filters; state estimation; Sugeno fuzzy inference framework; extended Kalman filtering; fuzzy local linear models; highly nonlinear target tracking problem; neurofuzzy modelling techniques; nonlinear Kalman filtering; nonlinear state estimation; Control engineering; Electric variables measurement; Filtering; Fuzzy systems; Kalman filters; Logic; Nonlinear equations; Nonlinear filters; State estimation; Target tracking;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
American Control Conference, 1997. Proceedings of the 1997
Conference_Location :
Albuquerque, NM
ISSN :
0743-1619
Print_ISBN :
0-7803-3832-4
Type :
conf
DOI :
10.1109/ACC.1997.612075
Filename :
612075
Link To Document :
بازگشت