• DocumentCode
    31395
  • Title

    Application of Machine Learning Techniques for Amplitude and Phase Noise Characterization

  • Author

    Zibar, Darko ; Hecker de Carvalho, Luis Henrique ; Piels, Molly ; Doberstein, Andy ; Diniz, Julio ; Nebendahl, Bernd ; Franciscangelis, Carolina ; Estaran, Jose ; Haisch, Hansjoerg ; Gonzalez, Neil G. ; de Oliveira, Julio Cesar R. F. ; Monroy, Idelfonso T

  • Author_Institution
    Dept. of Photonics Eng., Tech. Univ. of Denmark, Lyngby, Denmark
  • Volume
    33
  • Issue
    7
  • fYear
    2015
  • fDate
    April1, 1 2015
  • Firstpage
    1333
  • Lastpage
    1343
  • Abstract
    In this paper, tools from machine learning community, such as Bayesian filtering and expectation maximization parameter estimation, are presented and employed for laser amplitude and phase noise characterization. We show that phase noise estimation based on Bayesian filtering outperforms conventional time-domain approach in the presence of moderate measurement noise. Additionally, carrier synchronization based on Bayesian filtering, in combination with expectation maximization, is demonstrated for the first time experimentally.
  • Keywords
    Bayes methods; amplitude estimation; expectation-maximisation algorithm; filtering theory; learning (artificial intelligence); optical communication; parameter estimation; phase noise; Bayesian filtering; carrier synchronization; expectation maximization parameter estimation; laser amplitude characterization; machine learning technique; measurement noise; phase noise characterization; phase noise estimation; time-domain approach; Bayes methods; Kalman filters; Mathematical model; Phase noise; State-space methods; Vectors; Bayesian filtering; expectation maximization; optical communication; phase noise; synchronization;
  • fLanguage
    English
  • Journal_Title
    Lightwave Technology, Journal of
  • Publisher
    ieee
  • ISSN
    0733-8724
  • Type

    jour

  • DOI
    10.1109/JLT.2015.2394808
  • Filename
    7017531