DocumentCode :
31395
Title :
Application of Machine Learning Techniques for Amplitude and Phase Noise Characterization
Author :
Zibar, Darko ; Hecker de Carvalho, Luis Henrique ; Piels, Molly ; Doberstein, Andy ; Diniz, Julio ; Nebendahl, Bernd ; Franciscangelis, Carolina ; Estaran, Jose ; Haisch, Hansjoerg ; Gonzalez, Neil G. ; de Oliveira, Julio Cesar R. F. ; Monroy, Idelfonso T
Author_Institution :
Dept. of Photonics Eng., Tech. Univ. of Denmark, Lyngby, Denmark
Volume :
33
Issue :
7
fYear :
2015
fDate :
April1, 1 2015
Firstpage :
1333
Lastpage :
1343
Abstract :
In this paper, tools from machine learning community, such as Bayesian filtering and expectation maximization parameter estimation, are presented and employed for laser amplitude and phase noise characterization. We show that phase noise estimation based on Bayesian filtering outperforms conventional time-domain approach in the presence of moderate measurement noise. Additionally, carrier synchronization based on Bayesian filtering, in combination with expectation maximization, is demonstrated for the first time experimentally.
Keywords :
Bayes methods; amplitude estimation; expectation-maximisation algorithm; filtering theory; learning (artificial intelligence); optical communication; parameter estimation; phase noise; Bayesian filtering; carrier synchronization; expectation maximization parameter estimation; laser amplitude characterization; machine learning technique; measurement noise; phase noise characterization; phase noise estimation; time-domain approach; Bayes methods; Kalman filters; Mathematical model; Phase noise; State-space methods; Vectors; Bayesian filtering; expectation maximization; optical communication; phase noise; synchronization;
fLanguage :
English
Journal_Title :
Lightwave Technology, Journal of
Publisher :
ieee
ISSN :
0733-8724
Type :
jour
DOI :
10.1109/JLT.2015.2394808
Filename :
7017531
Link To Document :
بازگشت