DocumentCode
31395
Title
Application of Machine Learning Techniques for Amplitude and Phase Noise Characterization
Author
Zibar, Darko ; Hecker de Carvalho, Luis Henrique ; Piels, Molly ; Doberstein, Andy ; Diniz, Julio ; Nebendahl, Bernd ; Franciscangelis, Carolina ; Estaran, Jose ; Haisch, Hansjoerg ; Gonzalez, Neil G. ; de Oliveira, Julio Cesar R. F. ; Monroy, Idelfonso T
Author_Institution
Dept. of Photonics Eng., Tech. Univ. of Denmark, Lyngby, Denmark
Volume
33
Issue
7
fYear
2015
fDate
April1, 1 2015
Firstpage
1333
Lastpage
1343
Abstract
In this paper, tools from machine learning community, such as Bayesian filtering and expectation maximization parameter estimation, are presented and employed for laser amplitude and phase noise characterization. We show that phase noise estimation based on Bayesian filtering outperforms conventional time-domain approach in the presence of moderate measurement noise. Additionally, carrier synchronization based on Bayesian filtering, in combination with expectation maximization, is demonstrated for the first time experimentally.
Keywords
Bayes methods; amplitude estimation; expectation-maximisation algorithm; filtering theory; learning (artificial intelligence); optical communication; parameter estimation; phase noise; Bayesian filtering; carrier synchronization; expectation maximization parameter estimation; laser amplitude characterization; machine learning technique; measurement noise; phase noise characterization; phase noise estimation; time-domain approach; Bayes methods; Kalman filters; Mathematical model; Phase noise; State-space methods; Vectors; Bayesian filtering; expectation maximization; optical communication; phase noise; synchronization;
fLanguage
English
Journal_Title
Lightwave Technology, Journal of
Publisher
ieee
ISSN
0733-8724
Type
jour
DOI
10.1109/JLT.2015.2394808
Filename
7017531
Link To Document