Title :
An efficient algorithm for parameter estimation of noisy AR processes
Author_Institution :
Dept. of Math., Univ. of Western Sydney, NSW, Australia
Abstract :
The problem of estimating the unknown parameters of an autoregressive (AR) signal observed in white noise, including signal power and noise variance, is studied. A new method is developed for parameter estimation, which is based on a simple technique of estimating the measurement noise variance by increasing the underlying AR model by one dimension. The advantage of the presented method is that consistent estimates can be directly achieved without prefiltering of noisy data and without making any parameter transformation
Keywords :
autoregressive processes; parameter estimation; white noise; AR model; algorithm; autoregressive process; parameter estimation; signal power; variance; white noise; Equations; Mathematics; Maximum likelihood estimation; Multilevel systems; Noise measurement; Parameter estimation; Recursive estimation; Signal processing; Signal processing algorithms; White noise;
Conference_Titel :
Circuits and Systems, 1997. ISCAS '97., Proceedings of 1997 IEEE International Symposium on
Print_ISBN :
0-7803-3583-X
DOI :
10.1109/ISCAS.1997.612834