• DocumentCode
    314002
  • Title

    Linear programming bounds for codes in infinite projective spaces

  • Author

    Boyvalenkov, Peter ; Danev, Danyo ; Mitradjieva, Maria

  • Author_Institution
    Inst. of Math., Bulgarian Acad. of Sci., Sofia, Bulgaria
  • fYear
    1997
  • fDate
    29 Jun-4 Jul 1997
  • Firstpage
    81
  • Abstract
    We develop a technique for improving the universal linear programming bounds (ULPB) on the cardinality and the minimum distance of codes in infinite projective spaces FPn-1 (F=R,C,H). We introduce test functions Pj(FPn-1,ρ) having the property that Pj(FPn-1,ρ)<0 for some j if and only if the corresponding ULPB can be further improved by linear programming
  • Keywords
    codes; linear programming; set theory; Levenshtein bounds; cardinality; finite set; infinite projective spaces; minimum distance; polynomial; test functions; universal linear programming bounds; Artificial intelligence; Contracts; Extraterrestrial measurements; Jacobian matrices; Lattices; Linear programming; Mathematics; Polynomials; Testing; Upper bound;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Information Theory. 1997. Proceedings., 1997 IEEE International Symposium on
  • Conference_Location
    Ulm
  • Print_ISBN
    0-7803-3956-8
  • Type

    conf

  • DOI
    10.1109/ISIT.1997.612996
  • Filename
    612996