DocumentCode :
3140258
Title :
On musical score recognition using probabilistic reasoning
Author :
Stückelberg, Marc Vuilleumier ; Doermann, David
Author_Institution :
Geneva Univ., Switzerland
fYear :
1999
fDate :
20-22 Sep 1999
Firstpage :
115
Lastpage :
118
Abstract :
We present a probabilistic framework for document analysis and recognition and illustrate it on the problem of musical score recognition. Our system uses an explicit descriptive model of the document class to find the most likely interpretation of a scanned document image. In contrast to the traditional pipeline architecture, we carry out all stages of the analysis with a single inference engine, allowing for an end-to-end propagation of the uncertainty. The global modeling structure is similar to a stochastic attribute grammar, and local parameters are estimated using hidden Markov models
Keywords :
attribute grammars; character recognition; document image processing; image recognition; inference mechanisms; music; uncertainty handling; document analysis; document class; document recognition; end-to-end uncertainty propagation; explicit descriptive model; global modeling structure; hidden Markov models; inference engine; local parameter estimation; musical score recognition; probabilistic reasoning; scanned document image interpretation; stochastic attribute grammar; Decoding; Educational institutions; Engines; Graphics; Hidden Markov models; Image recognition; Lamps; Pattern recognition; Tellurium; Text analysis;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Document Analysis and Recognition, 1999. ICDAR '99. Proceedings of the Fifth International Conference on
Conference_Location :
Bangalore
Print_ISBN :
0-7695-0318-7
Type :
conf
DOI :
10.1109/ICDAR.1999.791738
Filename :
791738
Link To Document :
بازگشت