Title :
Mass computer-aided diagnosis method in mammogram based on texture features
Author :
Ke, Li ; Mu, Nannan ; Kang, Yan
Author_Institution :
Inst. of Biomed. & Electromagn. Eng., Shenyang Univ. of Technol., Shenyang, China
Abstract :
Computer-aided diagnosis (CAD) system can promote the detection accuracy by providing a “second opinion” to the radiologist, so high accuracy detection of mass in mammogram is critical for improving the performance and efficiency. In this paper, we designed a mass auto-diagnosis method in mammogram based on texture features. First, the mass was detected base on bilateral comparison, and the center of region of interest (ROI) was located. Second, fractal dimension and two-dimensional entropy were calculated as the texture features. Last, the kinds of ROI were diagnosed by Support Vector Machine (SVM), mass or normal region. A total of 106 prior mammograms were automatically detected, experimental results indicate that mass and suspected region have obvious difference in the fractal dimension and other texture features, and SVM is an effective classify method, and reduce the error rate in the mass detection, and the performance of the method is a sensitivity of 85.11% at 1.44 false positives per image.
Keywords :
biological organs; cancer; feature extraction; image texture; mammography; medical image processing; support vector machines; SVM; breast cancer; computer-aided diagnosis system; feature extraction; fractal dimension; image texture; mammography; mass detection; region of interest; support vector machine; two-dimensional entropy; Biomedical imaging; Breast; Design automation; Entropy; Feature extraction; Fractals; Support vector machines; Entropy; Support Vector Machine; fractal dimension; mass; texture features;
Conference_Titel :
Biomedical Engineering and Informatics (BMEI), 2010 3rd International Conference on
Conference_Location :
Yantai
Print_ISBN :
978-1-4244-6495-1
DOI :
10.1109/BMEI.2010.5639515