DocumentCode :
3144253
Title :
Rack Aware Scheduling in HPC Data Centers: An Energy Conservation Strategy
Author :
Patil, Vikas Ashok ; Chaudhary, Vipin
Author_Institution :
Dept. of Comput. Sci., State Univ. of New York at Buffalo, Buffalo, NY, USA
fYear :
2011
fDate :
16-20 May 2011
Firstpage :
814
Lastpage :
821
Abstract :
Energy consumption in high performance computing data centers has become a long standing issue. With rising costs of operating the data center, various techniques need to be employed to reduce the overall energy consumption. Currently, among others there are techniques that guarantee reduced energy consumption by powering on/off the idle nodes. However, most of them do not consider the energy consumed by other components in a rack. Our study addresses this aspect of the data center. We show that we can gain considerable energy savings by reducing the energy consumed by these rack components. In this regard, we propose a scheduling technique that will help schedule jobs with the above mentioned goal. We claim that by our scheduling technique we can reduce the energy consumption considerably without affecting other performance metrics of a job. We implement this technique as an enhancement to the well known Maui scheduler and present our results. We compare our technique with various currently available Maui scheduler configurations. We simulate a wide variety of workloads from real cluster deployments using the simulation mode of Maui. Our results consistently show about 7 to 14% savings over the currently available Maui scheduler configurations. We shall also see that our technique can be applied in tandem with most of the existing energy aware scheduling techniques to achieve enhanced energy savings.
Keywords :
computer centres; energy conservation; energy consumption; power aware computing; processor scheduling; HPC data centers; Maui scheduler; energy conservation strategy; energy consumption; high performance computing data centers; rack aware scheduling; Energy conservation; Energy consumption; Fans; Resource management; Scheduling; Servers; Torque;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Parallel and Distributed Processing Workshops and Phd Forum (IPDPSW), 2011 IEEE International Symposium on
Conference_Location :
Shanghai
ISSN :
1530-2075
Print_ISBN :
978-1-61284-425-1
Electronic_ISBN :
1530-2075
Type :
conf
DOI :
10.1109/IPDPS.2011.227
Filename :
6008925
Link To Document :
بازگشت