Abstract :
There is increased interest, in high-performance computing as well as in commercial data centers, in so-called scale-out systems, where large numbers of low-cost and low-power-dissipation servers are used for workloads which have available coarse-grained parallelism. One target class of devices for building scale-out systems is the class of low-power processors, such as those based on the ARM architecture, the Power Architecture, and the Intel Atom processor. This article presents a detailed characterization of three contemporary low-power processors covering all the aforementioned IS As, all implemented in state-of-the-art 45nm semiconductor processes. Processor performance, power dissipation, thermal load, and board-level power dissipation apportionment are presented, via a combination of hardware performance counters, OS-level timing measurements, current measurements, and thermal imaging via a microbolometer array. It is demonstrated that while certain processors might provide low power dissipation, the most energy-efficient platform depends on the characteristics of the application, and the design of the entire platform (including integrated versus on-board peripherals, power supply regulators, etc.). The lowest-power platform showed a power-efficiency advantage of almost four times lower idle power dissipation, and almost five times lower active power dissipation for a single-threaded workload, versus the highest-power-dissipation platform studied. The latter however achieved a factor of two better energy-efficiency than its closest competitor, when executing a throughput-oriented workload, due to significantly better compute performance and available hardware concurrency.
Keywords :
bolometers; electric current measurement; infrared imaging; low-power electronics; microprocessor chips; performance evaluation; reduced instruction set computing; thermal analysis; ARM architecture; Intel Atom processor; OS-level timing measurement; Power Architecture; board-level power dissipation; commercial data center; current measurement; hardware concurrency; hardware performance counter; high-performance computing; low-cost servers; low-power processor; low-power-dissipation servers; microbolometer array; performance analysis; power analysis; power efficiency; processor performance; scale-out system; single-threaded workload; size 45 nm; thermal analysis; thermal imaging; thermal load; Benchmark testing; Current measurement; Hardware; Power dissipation; Power measurement; Program processors; Radiation detectors;