DocumentCode :
3146550
Title :
Bubble lodging in bifurcating microvessel networks: a microfluidic model
Author :
Calderon, Andres J. ; Heo, Yunseok ; Huh, Dongeun ; Nobuyuki, F. ; Takayama, Shuichi ; Fowlkes, Brian ; Bull, Joseph L.
Author_Institution :
Dept. of Biomed. Eng., Michigan Univ., MI
fYear :
2006
fDate :
9-12 May 2006
Firstpage :
202
Lastpage :
205
Abstract :
Lodging of cardiovascular gas bubbles is investigated in a microfluidic model of small arteriole bifurcations. These experiments address the dynamics of the lodging mechanism of gas bubbles in bifurcations. This work is motivated by a novel gas embolotherapy technique for the potential treatment of cancer by tumor infarction. The experimental model arteriole bifurcations were constructed from a transparent elastomer (polydimethylsiloxane). A single air bubble was suspended in water within the parent tube of the bifurcation and a specified driving pressure was imposed via constant elevation reservoirs that were open to atmospheric pressure. The driving pressure and bubble size were varied, and their effects on the bubble lodging were assessed. The results show that the pressure to lodge a bubble in a bifurcation is less than to dislodge it. It was also possible to occlude an entire bifurcation and multiple bifurcation devices with bubbles. Splitting ratios were assessed in the range of lodging to dislodging pressure where we observed an instability in bubble splitting. From the results we estimate that gas bubbles from embolotherapy can lodge in vessels 21 mum or smaller in diameter. These findings may be useful in developing strategies for microbubble delivery in gas embolotherapy
Keywords :
bifurcation; bioMEMS; biomedical ultrasonics; blood vessels; bubbles; cancer; cardiovascular system; elastomers; haemorheology; microfluidics; patient treatment; tumours; 21 micron; acoustic droplet vaporization; atmospheric pressure; bifurcating microvessel networks; bubble size; bubble splitting instability; cancer treatment; cardiovascular gas bubble lodging; constant elevation reservoirs; dislodging pressure; gas bubble lodging dynamics; gas embolotherapy technique; lodging pressure; microbubble delivery; microfluidic model; polydimethylsiloxane; small arteriole bifurcation model; splitting ratios; transparent elastomer; tumor infarction; Atmospheric modeling; Bifurcation; Cancer; Cardiology; Microfluidics; Neoplasms; Radiology; Reservoirs; Shape; Water resources; bubbles; gas embolotherapy; microchannels; microvessel and bifurcating channels;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Microtechnologies in Medicine and Biology, 2006 International Conference on
Conference_Location :
Okinawa
Print_ISBN :
1-4244-0338-3
Electronic_ISBN :
1-4244-0338-3
Type :
conf
DOI :
10.1109/MMB.2006.251528
Filename :
4281346
Link To Document :
بازگشت