DocumentCode :
3146860
Title :
Modified algebraic decoding of the binary (47, 24, 11) quadratic residue code
Author :
Lee, Hung-Peng ; Chang, Hsin-Chiu
Author_Institution :
Dept. of Comput. Sci. & Inf. Eng., Fortune Inst. of Technol., Kaohsiung, Taiwan
fYear :
2011
fDate :
16-18 April 2011
Firstpage :
5056
Lastpage :
5059
Abstract :
A modified algebraic decoding algorithm (ADA) is presented to decode up to five possible errors in a binary systematic (47, 24, 11) quadratic residue (QR) code. The main key points of the proposed ADA are to modify the erroneous conditions in Case 3, Case 4, and Case 5 of the ADA given in He et al. (2001) and to find out the true conditions from Case 2 to Case 5. The new conditions can also be applied to the ADA given in Lin et al. (2010). A simulation result shows that the decoding time of the proposed ADA is faster than that of ADA given in Lin et al. (2010).
Keywords :
algebraic codes; binary codes; decoding; residue codes; ADA; binary quadratic residue code; modified algebraic decoding algorithm; quadratic residue; Decoding; Galois fields; Helium; Polynomials; Silicon; Simulation; Systematics; algebraic decoding algorithm; error locator polynomial; quadratic residue codes; syndrome;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Consumer Electronics, Communications and Networks (CECNet), 2011 International Conference on
Conference_Location :
XianNing
Print_ISBN :
978-1-61284-458-9
Type :
conf
DOI :
10.1109/CECNET.2011.5768172
Filename :
5768172
Link To Document :
بازگشت