DocumentCode :
3147261
Title :
Face detection based on multi-scale enhanced local texture feature sets
Author :
Wei, Zhe ; Dong, Yuan ; Zhao, Feng ; Bai, Hongliang
Author_Institution :
Beijing Univ. of Posts & Telecommun., Beijing, China
fYear :
2012
fDate :
25-30 March 2012
Firstpage :
953
Lastpage :
956
Abstract :
This paper presents a distinctive rectangle feature Multi-Scale Local Ternary Patterns (MS-LTP) for face detection. The MS-LTP is a generalization of the Local Ternary Patterns (LTP) [1] and is able to capture larger scale structures of faces. It´s less sensitive to noise and more discriminative that can reduce the number of weak classifiers for the AdaBoost learning algorithm to construct a strong face/non-face classifier. The size of the MS-LTP feature set is also medium for the AdaBoost learning algorithm to select a proper set of features. Our experimental results on the CMU-MIT frontal face test set show that the MS-LTP outperforms Haar, Local Binary Patterns (LBP) under noisy conditions and the MS-LTP based face detector works more rapidly.
Keywords :
face recognition; feature extraction; image classification; AdaBoost learning; CMU-MIT frontal face test set; distinctive rectangle feature; face detection; larger scale structures; multiscale enhanced local texture feature sets; multiscale local ternary patterns; noisy conditions; nonface classifier; weak classifiers; Detectors; Face; Face detection; Feature extraction; Noise; Robustness; Training; AdaBoost; MS-LTP; face detection;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech and Signal Processing (ICASSP), 2012 IEEE International Conference on
Conference_Location :
Kyoto
ISSN :
1520-6149
Print_ISBN :
978-1-4673-0045-2
Electronic_ISBN :
1520-6149
Type :
conf
DOI :
10.1109/ICASSP.2012.6288043
Filename :
6288043
Link To Document :
بازگشت