DocumentCode :
3147792
Title :
Fractional-order diffusion for image reconstruction
Author :
Larnier, Stanislas ; Mecca, Roberto
Author_Institution :
Inst. de Math. de Toulouse, Univ. Paul Sabatier, Toulouse, France
fYear :
2012
fDate :
25-30 March 2012
Firstpage :
1057
Lastpage :
1060
Abstract :
In this paper, a general framework based on fractional-order partial differential equations allows to solve image reconstruction problems. The algorithm presented in this work combines two previous notions: a fractional derivative implementation by Discrete Fourier Transform and the edge detection by topological gradient. The purpose of the paper is to extend some existing results in image denoising problem with fractional-order diffusion equations and presents new results in image inpainting. The results emphasize the importance of particular fractional-orders.
Keywords :
discrete Fourier transforms; gradient methods; image denoising; image reconstruction; partial differential equations; discrete Fourier transform; fractional-order diffusion equations; fractional-order partial differential equations; image denoising; image inpainting; image reconstruction; topological gradient; Boats; Equations; Image denoising; Image edge detection; Image reconstruction; PSNR; Fractional-order partial differential equation; image denoising; image inpainting; topological gradient;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech and Signal Processing (ICASSP), 2012 IEEE International Conference on
Conference_Location :
Kyoto
ISSN :
1520-6149
Print_ISBN :
978-1-4673-0045-2
Electronic_ISBN :
1520-6149
Type :
conf
DOI :
10.1109/ICASSP.2012.6288068
Filename :
6288068
Link To Document :
بازگشت