Title :
Poisson noise reduction with non-local PCA
Author :
Salmon, J. ; Deledalle, C.-A. ; Willett, R. ; Harmany, Z.
Author_Institution :
ECE Dept., Duke Univ., Durham, NC, USA
Abstract :
Photon limitations arise in spectral imaging, nuclear medicine, astronomy and night vision. The Poisson distribution used to model this noise has variance equal to its mean so blind application of standard noise removals methods yields significant artifacts. Recently, overcomplete dictionaries combined with sparse learning techniques have become extremely popular in image reconstruction. The aim of the present work is to demonstrate that for the task of image denoising, nearly state-of-the-art results can be achieved using small dictionaries only, provided that they are learned directly from the noisy image. To this end, we introduce patch-based denoising algorithms which perform an adaptation of PCA (Principal Component Analysis) for Poisson noise. We carry out a comprehensive empirical evaluation of the performance of our algorithms in terms of accuracy when the photon count is really low. The results reveal that, despite its simplicity, PCA-flavored denoising appears to be competitive with other state-of-the-art denoising algorithms.
Keywords :
Poisson distribution; image denoising; principal component analysis; PCA-flavored denoising; Poisson distribution; Poisson noise reduction; astronomy; blind application; dictionaries; image denoising; night vision; noisy image; nonlocal PCA; nuclear medicine; patch-based denoising algorithm; photon count; photon limitation; principal component analysis; spectral imaging; standard noise removal method; Dictionaries; Noise; Noise measurement; Noise reduction; Photonics; Principal component analysis; Transforms; Image denoising; Newton´s method; gradient methods; signal representations;
Conference_Titel :
Acoustics, Speech and Signal Processing (ICASSP), 2012 IEEE International Conference on
Conference_Location :
Kyoto
Print_ISBN :
978-1-4673-0045-2
Electronic_ISBN :
1520-6149
DOI :
10.1109/ICASSP.2012.6288081