DocumentCode :
3149753
Title :
Robust visual tracking via MCMC-based particle filtering
Author :
Cong, D-N Truong ; Septier, F. ; Garnier, C. ; Khoudour, L. ; Delignon, Y.
Author_Institution :
Telecom Lille 1, LAGIS, Inst. Telecom, Lille, France
fYear :
2012
fDate :
25-30 March 2012
Firstpage :
1493
Lastpage :
1496
Abstract :
We present in this paper a new visual tracking framework based on the MCMC-based particle algorithm. Firstly, in order to obtain a more informative likelihood, we propose to combine the color-based observation model with a detection confidence density obtained from the Histograms of Oriented Gradients (HOG) descriptor. The MCMC-based particle algorithm is then employed to estimate the posterior distribution of the target state to solve the tracking problem. The global system has been tested on different real datasets. Experimental results demonstrate the robustness of the proposed system in several difficult scenarios.
Keywords :
image colour analysis; particle filtering (numerical methods); HOG descriptor; MCMC-based particle algorithm; MCMC-based particle filtering; color-based observation model; detection confidence density; different real datasets; global system; histograms of oriented gradients; informative likelihood; posterior distribution estimation; tracking problem; visual tracking framework; Covariance matrix; Histograms; Joints; Proposals; Robustness; Target tracking; Visualization; HOG; MCMC; Visual tracking; particle filtering;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech and Signal Processing (ICASSP), 2012 IEEE International Conference on
Conference_Location :
Kyoto
ISSN :
1520-6149
Print_ISBN :
978-1-4673-0045-2
Electronic_ISBN :
1520-6149
Type :
conf
DOI :
10.1109/ICASSP.2012.6288173
Filename :
6288173
Link To Document :
بازگشت