Title : 
Intelligent progression for anomaly intrusion detection
         
        
            Author : 
Marimuthu, A. ; Shanmugam, A.
         
        
            Author_Institution : 
Dept. of Comput. Sci. Eng., Vinayaka Mission´´s Univ., Coimbatore
         
        
        
        
        
        
            Abstract : 
This paper describes a technique of combining K-Means clustering (KMC) and genetic algorithm (GA) to network intrusion detection systems (IDSs). A brief overview of the intrusion detection system, K-Means clustering, genetic algorithm, and related detection techniques is presented. Parameters and evolution process for GA are discussed in detail. Unlike other implementations of the same problem, this implementation combines K-Means clustering and genetic algorithm resulting in a better result to generate rules in IDS. This is helpful for identification of complex anomalous behaviors. This work is focused on the TCP/IP network protocols.
         
        
            Keywords : 
genetic algorithms; pattern clustering; security of data; transport protocols; TCP/IP network protocols; evolution process; genetic algorithm; intrusion detection systems; k-means clustering; parameter process; Informatics; Intrusion detection; Machine intelligence;
         
        
        
        
            Conference_Titel : 
Applied Machine Intelligence and Informatics, 2008. SAMI 2008. 6th International Symposium on
         
        
            Conference_Location : 
Herlany
         
        
            Print_ISBN : 
978-1-4244-2105-3
         
        
            Electronic_ISBN : 
978-1-4244-2106-0
         
        
        
            DOI : 
10.1109/SAMI.2008.4469180