DocumentCode :
3155144
Title :
Predictive state vector encoding for decentralized field estimation in sensor networks
Author :
Xaver, Florian ; Matz, Gerald ; Gerstoft, Peter ; Mecklenbräuker, Christoph
Author_Institution :
Inst. of Telecommun., Vienna Univ. of Technol., Vienna, Austria
fYear :
2012
fDate :
25-30 March 2012
Firstpage :
2661
Lastpage :
2664
Abstract :
Decentralized physics-based field estimation in clustered sensor networks requires the exchange of state vectors between neighboring clusters. We reduce the communication overhead between clusters by using a differential encoding of state vectors that exploits the spatio-temporal field dependencies. This encoding involves a Kalman prediction step that builds on the state-space equations governing the field´s spatio-temporal evolution. The Kalman step keeps the computational complexity low. Simulation results for an acoustic field demonstrate the approach.
Keywords :
Kalman filters; radio networks; vectors; Kalman prediction step; acoustic field; clustered sensor network; decentralized physics-based field estimation; differential encoding; predictive state vector encoding; spatio-temporal evolution; spatio-temporal field; state-space equation; Acoustics; Correlation; Encoding; Estimation; Kalman filters; Technological innovation; Vectors; Kalman filter; acoustic field; differential encoding; distributed parameter estimation; linear prediction;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech and Signal Processing (ICASSP), 2012 IEEE International Conference on
Conference_Location :
Kyoto
ISSN :
1520-6149
Print_ISBN :
978-1-4673-0045-2
Electronic_ISBN :
1520-6149
Type :
conf
DOI :
10.1109/ICASSP.2012.6288464
Filename :
6288464
Link To Document :
بازگشت