DocumentCode :
3155426
Title :
A Web recommendation system based on maximum entropy
Author :
Jin, Xin ; Mobasher, Bamshad ; Zhou, Yanzan
Author_Institution :
Center for Web Intelligence, DePaul Univ., Chicago, IL, USA
Volume :
1
fYear :
2005
fDate :
4-6 April 2005
Firstpage :
213
Abstract :
In this paper, we propose a Web recommendation system based on a maximum entropy model. Under the maximum entropy principle, multiple sources of knowledge about users´ navigational behavior in a Web site can be seamlessly combined to discover usage patterns and to automatically generate the most effective recommendations for new users with similar profiles. In this paper we integrate the knowledge from page-level clickstream statistics about users´ past navigations with the aggregate usage patterns discovered through Web usage mining. Our experiment results show that our method can achieve better prediction accuracy when compared to standard recommendation approaches, while providing a better interpretation of Web users´ diverse navigational behaviors.
Keywords :
Web sites; data mining; information filters; information retrieval; maximum entropy methods; statistics; Web recommendation system; Web site; Web usage mining; information navigation; maximum entropy principle; page-level clickstream statistics; usage pattern discovery; user navigational behavior; Computer science; Data mining; Entropy; Information systems; Machine learning; Navigation; Nearest neighbor searches; Pattern analysis; Power system modeling; Statistics;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information Technology: Coding and Computing, 2005. ITCC 2005. International Conference on
Print_ISBN :
0-7695-2315-3
Type :
conf
DOI :
10.1109/ITCC.2005.53
Filename :
1428464
Link To Document :
بازگشت