DocumentCode :
315850
Title :
Designing better entropy-constrained vector quantizers via clustering and integral projections
Author :
Wang, Ting-Chi ; Huang, Hung-Ru
Author_Institution :
Dept. of Inf. & Comput. Eng., Chung Yuan Christian Univ., Chung Li, Taiwan
Volume :
2
fYear :
1997
fDate :
9-12 Jun 1997
Firstpage :
1325
Abstract :
This paper presents a novel algorithm, which combines both the merits of clustering and integral projections, to solve the entropy-constrained codebook design problem. The experimental results indicate that the proposed algorithm is very efficient and is capable of generating better codebooks than the ECVQ algorithm
Keywords :
entropy codes; image coding; vector quantisation; VQ method; clustering; codebook design problem; entropy-constrained vector quantizers; image compression; integral projections; Algorithm design and analysis; Clustering algorithms; Cost function; Design engineering; Distortion measurement; Encoding; Image coding; Iterative algorithms; Partitioning algorithms; Vector quantization;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Circuits and Systems, 1997. ISCAS '97., Proceedings of 1997 IEEE International Symposium on
Print_ISBN :
0-7803-3583-X
Type :
conf
DOI :
10.1109/ISCAS.1997.622098
Filename :
622098
Link To Document :
بازگشت