DocumentCode :
3160951
Title :
Natural gas pipeline leak detection based on data mining
Author :
Wang, Xiu-fang ; Wang, Yan ; Jiang, Chun-lei ; Liang, Hong-wei
Author_Institution :
Inf. & Commun. Eng. Inst., Beijing Univ. of Posts & Telecommun., Beijing, China
fYear :
2011
fDate :
16-18 April 2011
Firstpage :
492
Lastpage :
494
Abstract :
Using data mining´s decision tree classification, DBSCN cluster analysis, and K-nearest neighbor algorithm realizes the information mining of natural gas pipeline leak, and alse uncovers the objective laws behind the natural gas pipeline transmission, intrinsically linking to the each parameter and development trend. We could reduce the risk of accidents and economic losses, in order to control the natural gas transmission in advance.
Keywords :
data mining; decision trees; natural gas technology; pattern clustering; pipelines; DBSCN cluster analysis; accident risk; data mining; decision tree classification; economic losses; k-nearest neighbor algorithm; natural gas pipeline leak detection; natural gas transmission; Accidents; Classification algorithms; Data mining; Decision trees; Materials; Natural gas; Pipelines; Data mining; Development trend; Natural gas pipeline leak; Objective law;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Consumer Electronics, Communications and Networks (CECNet), 2011 International Conference on
Conference_Location :
XianNing
Print_ISBN :
978-1-61284-458-9
Type :
conf
DOI :
10.1109/CECNET.2011.5768886
Filename :
5768886
Link To Document :
بازگشت