DocumentCode :
3161068
Title :
Approximating signals supported on graphs
Author :
Zhu, Xiaofan ; Rabbat, Michael
Author_Institution :
Dept. of Electr. & Comput. Eng., McGill Univ., Montreal, QC, Canada
fYear :
2012
fDate :
25-30 March 2012
Firstpage :
3921
Lastpage :
3924
Abstract :
In this paper, we introduce the concept of smoothness for signals supported on the vertices of a graph. We provide theoretical explanations when and why the Laplacian eigenbasis can be regarded as a meaningful “Fourier” transform of such signals. Moreover, we analyze the desired properties of the underlying graphs for better compressibility of the signals. We verify our theoretical work by experiments on real world data.
Keywords :
Fourier transforms; Laplace transforms; approximation theory; eigenvalues and eigenfunctions; signal processing; Fourier transform; Laplacian eigenbasis; graph vertices; signal approximation; signal compressibility; Compressed sensing; Eigenvalues and eigenfunctions; Fourier transforms; Laplace equations; Linear approximation; Sensors; Fourier transform; Graph Laplacian; compressibility; smoothness;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech and Signal Processing (ICASSP), 2012 IEEE International Conference on
Conference_Location :
Kyoto
ISSN :
1520-6149
Print_ISBN :
978-1-4673-0045-2
Electronic_ISBN :
1520-6149
Type :
conf
DOI :
10.1109/ICASSP.2012.6288775
Filename :
6288775
Link To Document :
بازگشت