DocumentCode :
3163255
Title :
Modeling gender dependency in the Subspace GMM framework
Author :
Vu, Ngoc Thang ; Schultz, Tanja ; Povey, Daniel
Author_Institution :
Karlsruhe Inst. of Technol., Karlsruhe, Germany
fYear :
2012
fDate :
25-30 March 2012
Firstpage :
4345
Lastpage :
4348
Abstract :
The Subspace GMM acoustic model has both globally shared parameters and parameters specific to acoustic states, and this makes it possible to do various kinds of tying. In the past we have investigated sharing the global parameters among systems with distinct acoustic states; this can be useful in a multilingual setting. In the current paper we investigate the reverse idea: to have different global parameters for different acoustic conditions (gender, in this case) while sharing the acoustic-state-specific parameters. We experiment with modeling gender dependency in this way, and show Word Error Rate improvements on a range of tasks and comparable results to the Vocal Tract Length Normalization (VTLN)-like technique Exponential Transform (ET).
Keywords :
Gaussian processes; speech recognition; transforms; ET; Gaussian mixture model; VTLN; acoustic-state-specific parameter; exponential transform; gender dependency modeling; global shared parameter; multilingual setting; speech recognition; subspace GMM acoustic model; vocal tract length normalization; word error rate improvement; Acoustics; Adaptation models; Decoding; Hidden Markov models; Speech; Speech recognition; Training; Subspace Gaussian Mixture Models; gender dependency modeling;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech and Signal Processing (ICASSP), 2012 IEEE International Conference on
Conference_Location :
Kyoto
ISSN :
1520-6149
Print_ISBN :
978-1-4673-0045-2
Electronic_ISBN :
1520-6149
Type :
conf
DOI :
10.1109/ICASSP.2012.6288881
Filename :
6288881
Link To Document :
بازگشت