DocumentCode :
3163973
Title :
A maximum entropy approach to pairwise data clustering
Author :
Buhmann, J.M. ; Hofmann, T.
Author_Institution :
Inst. fur Inf. III, Bonn Univ., Germany
Volume :
2
fYear :
1994
fDate :
9-13 Oct 1994
Firstpage :
207
Abstract :
Partitioning a set of data points which are characterized by their mutual dissimilarities instead of an explicit coordinate representation is a difficult, NP-hard combinatorial optimization problem. The authors formulate this optimization problem of a pairwise clustering cost function in the maximum entropy framework using a variational principle to derive corresponding data partitionings in a d-dimensional Euclidian space. This approximation solves the embedding problem and the grouping of these data into clusters simultaneously and in a selfconsistent fashion
Keywords :
maximum entropy methods; NP-hard combinatorial optimization problem; d-dimensional Euclidian space; data partitionings; embedding problem; maximum entropy approach; pairwise data clustering; variational principle; Cost function; Data analysis; Data visualization; Embedded computing; Entropy; Extraterrestrial measurements; Noise measurement; Noise reduction; Psychology; Symmetric matrices;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Pattern Recognition, 1994. Vol. 2 - Conference B: Computer Vision & Image Processing., Proceedings of the 12th IAPR International. Conference on
Conference_Location :
Jerusalem
Print_ISBN :
0-8186-6270-0
Type :
conf
DOI :
10.1109/ICPR.1994.576905
Filename :
576905
Link To Document :
بازگشت