DocumentCode :
3164425
Title :
Intelligent granulation of machine-generated data
Author :
Slezak, Dominik ; Kowalski, Matthieu
Author_Institution :
Inst. of Math., Univ. of Warsaw, Warsaw, Poland
fYear :
2013
fDate :
24-28 June 2013
Firstpage :
68
Lastpage :
73
Abstract :
We discuss how the specifics of data granulation methodology can influence Infobright´s database system performance. We put together our two previous research paths related to machine-generated data sets, namely, dynamic reorganization of data during load and efficient handling of alphanumeric columns with compound values. We emphasize the role of domain knowledge while tuning data granulation processes.
Keywords :
data handling; granular computing; inference mechanisms; Infobright database system; alphanumeric columns; compound values; data granulation methodology; dynamic reorganization; granulation processes; intelligent granulation; machine generated data; Approximation methods; Compounds; Data mining; Database systems; Dictionaries; Rough sets; Analytic Databases; Compound Values; Domain Knowledge; Outliers; Stream Clustering;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), 2013 Joint
Conference_Location :
Edmonton, AB
Type :
conf
DOI :
10.1109/IFSA-NAFIPS.2013.6608377
Filename :
6608377
Link To Document :
بازگشت