DocumentCode :
3164698
Title :
Partial orders on the truth value algebra of finite type-2 fuzzy sets
Author :
Harding, John ; Walker, Coral ; Walker, Elbert
Author_Institution :
Dept. of Math. Sci., New Mexico State Univ., Las Cruces, NM, USA
fYear :
2013
fDate :
24-28 June 2013
Firstpage :
163
Lastpage :
168
Abstract :
The elements of the truth value algebra of type-2 fuzzy sets are all mappings of the unit interval into itself, with operations given by various convolutions of the pointwise operations. This algebra can be specialized and generalized in various interesting ways. Here we replace each copy of the unit interval by a finite chain, and define operations analogously. Among these are two binary operations which are idempotent, commutative, and associative, and thus each yields a partial order. Here we investigate these partial orders. It is easy to show that each is a lattice. One principal concern is with the partial order given by the intersection of these two partial orders, which we call the double order. Some results are that two functions are incomparable under the double order unless they have the same least upper bound, and that the set of functions with a given least upper bound is a lattice under the double order. Thus the algebra itself is an antichain of lattices in a natural way.
Keywords :
algebra; fuzzy set theory; binary operations; double order; finite type-2 fuzzy sets; least upper bound; partial orders; pointwise operations; truth value algebra; Equations; Fuzzy sets; Indexes; Lattices; Manganese; Upper bound;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), 2013 Joint
Conference_Location :
Edmonton, AB
Type :
conf
DOI :
10.1109/IFSA-NAFIPS.2013.6608393
Filename :
6608393
Link To Document :
بازگشت