Title :
Regularized Tyler´s Scatter Estimator: Existence, Uniqueness, and Algorithms
Author :
Ying Sun ; Babu, P. ; Palomar, Daniel P.
Author_Institution :
Dept. of Electron. & Comput. Eng., Hong Kong Univ. of Sci. & Technol., Hong Kong, China
Abstract :
This paper considers the regularized Tyler´s scatter estimator for elliptical distributions, which has received considerable attention recently. Various types of shrinkage Tyler´s estimators have been proposed in the literature and proved work effectively in the “large p small n” scenario. Nevertheless, the existence and uniqueness properties of the estimators are not thoroughly studied, and in certain cases the algorithms may fail to converge. In this work, we provide a general result that analyzes the sufficient condition for the existence of a family of shrinkage Tyler´s estimators, which quantitatively shows that regularization indeed reduces the number of required samples for estimation and the convergence of the algorithms for the estimators. For two specific shrinkage Tyler´s estimators, we also proved that the condition is necessary and the estimator is unique. Finally, we show that the two estimators are actually equivalent. Numerical algorithms are also derived based on the majorization-minimization framework, under which the convergence is analyzed systematically.
Keywords :
S-matrix theory; estimation theory; signal processing; convergence analysis; elliptical distributions; majorization-minimization framework; normalized scatter matrix; numerical algorithms; regularized Tyler scatter estimator; shrinkage Tyler estimators; signal processing; sufficient condition; Cost function; Covariance matrices; Equations; Estimation; Robustness; Signal processing algorithms; Symmetric matrices; Tyler´s scatter estimator; existence; majorization-minimization; shrinkage estimator; uniqueness;
Journal_Title :
Signal Processing, IEEE Transactions on
DOI :
10.1109/TSP.2014.2348944