Title :
Hibernating Process: Modelling Mobile Calls at Multiple Scales
Author :
Siyuan Liu ; Lei Li ; Krishnan, Ram
Abstract :
Do mobile phone calls at larger granularities behave in the same pattern as in smaller ones? How can we forecast the distribution of a whole month´s phone calls with only one day´s observation? There are many models developed to interpret large scale social graphs. However, all of the existing models focus on graph at one time scale. Many dynamical behaviors were either ignored, or handled at one scale. In particular new users might join or current users quit social networks at any time. In this paper, we propose HiP, a novel model to capture longitudinal behaviors in modeling degree distribution of evolving social graphs. We analyze a large scale phone call dataset using HiP, and compare with several previous models in literature. Our model is able to fit phone call distribution at multiple scales with 30% to 75% improvement over the best existing method on each scale.
Keywords :
graph theory; mobile computing; social sciences computing; hibernating process; large scale phone call dataset; large scale social graphs; social graphs; social networks; Data models; Hip; Mobile communication; Mobile computing; Mobile handsets; Parametric statistics; Social network services; Mobile phone call graph; churning behavior; heavy tailed distribution; non-parametric model;
Conference_Titel :
Data Mining (ICDM), 2013 IEEE 13th International Conference on
Conference_Location :
Dallas, TX
DOI :
10.1109/ICDM.2013.82