DocumentCode :
3166696
Title :
High-Speed Function Approximation
Author :
Panda, Biswanath ; Riedewald, Mirek ; Gehrke, Johannes ; Pope, Stephen B.
Author_Institution :
Cornell Univ., Ithaca
fYear :
2007
fDate :
28-31 Oct. 2007
Firstpage :
613
Lastpage :
618
Abstract :
We address a new learning problem where the goal is to build a predictive model that minimizes prediction time (the time taken to make a prediction) subject to a constraint on model accuracy. Our solution is a generic framework that leverages existing data mining algorithms without requiring any modifications to these algorithms. We show a first application of our framework to a combustion simulation problem. Our experimental evaluation shows significant improvements over existing methods; prediction time typically is improved by a factor between 2 and 6.
Keywords :
combustion; data mining; function approximation; learning (artificial intelligence); prediction theory; combustion simulation problem; data mining algorithms; high-speed function approximation; learning problem; prediction time minimisation; predictive model; Area measurement; Combustion; Computational modeling; Computer science; Costs; Data mining; Function approximation; Polynomials; Prediction algorithms; Predictive models;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Data Mining, 2007. ICDM 2007. Seventh IEEE International Conference on
Conference_Location :
Omaha, NE
ISSN :
1550-4786
Print_ISBN :
978-0-7695-3018-5
Type :
conf
DOI :
10.1109/ICDM.2007.107
Filename :
4470299
Link To Document :
بازگشت