Title :
Engineering design of lossless passive soft switching methods for PWM converters. II. Nonminimum voltage stress circuit cells
Author :
Smith, K. Mark, Jr. ; Smedley, K.M.
Author_Institution :
California Univ., Irvine, CA, USA
Abstract :
This paper proposes the analysis and design of lossless, passive soft switching methods for PWM converters. The emphasis of the design and analysis is for PWM converters that use nonminimum voltage stress (non-MVS) circuit cells to provide soft switching. PWM converters with non-MVS circuit cells have several distinct advantages over converters that use minimum voltage stress (MVS) cells. With the same relative size of the inductor and capacitor added for soft switching, the non-MVS cells have a substantially larger duty ratio range where soft switching is guaranteed. In addition, the over-current stress of the main switch, under most conditions, will be lower and a more optimum value of inductor and capacitor added for soft switching can be used. Therefore, with proper design, the non-MVS cells provide higher efficiency. The loss model for a MOSFET and optimum capacitor and inductor values are utilized in the design procedure. Examples of the design procedure are given for PFC and DC-DC applications. Experimental results backup the claim of higher efficiency
Keywords :
DC-DC power convertors; PWM power convertors; losses; power MOSFET; power factor correction; switching circuits; DC-DC converter; MOSFET; PWM converters; capacitor; inductor; loss model; lossless passive soft switching methods; nonminimum voltage stress circuit cells; over-current stress; power factor correction; Capacitors; Design engineering; Inductors; MOSFET circuits; Pulse width modulation converters; Stress; Switches; Switching circuits; Switching converters; Voltage;
Conference_Titel :
Telecommunications Energy Conference, 1998. INTELEC. Twentieth International
Conference_Location :
San Francisco, CA
Print_ISBN :
0-7803-5069-3
DOI :
10.1109/INTLEC.1998.793626