DocumentCode :
3167475
Title :
Spoken document retrieval by discriminative modeling in a high dimensional feature space
Author :
Oba, Takanobu ; Hori, Takaaki ; Nakamura, Atsushi ; Ito, Akinori
Author_Institution :
NTT Commun. Sci. Labs., NTT Corp., Kyoto, Japan
fYear :
2012
fDate :
25-30 March 2012
Firstpage :
5153
Lastpage :
5156
Abstract :
This paper proposes discriminative modeling in a high dimensional feature space for spoken document retrieval (SDR). To estimate the parameters of a high dimensional model properly, a large quantity of data is necessary, but there is no such large corpus for document retrieval. This paper employs two approaches to overcome this problem. One is a reranking approach. A baseline system first gives each document a score and then the score is compensated by employing a high dimensional model. The other approach is automatic query generation. A large number of queries are automatically generated and used for parameter estimation. Our experimental result shows that our proposed method can greatly improve SDR performance.
Keywords :
parameter estimation; query processing; speech processing; SDR; automatic query generation; baseline system; discriminative modeling; high dimensional feature space; high dimensional model properly; parameter estimation; reranking approach; spoken document retrieval; Computational modeling; Hidden Markov models; Indexes; Speech recognition; Training; Training data; Vectors; Discriminative model; Linear model; Spoken document retrieval;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech and Signal Processing (ICASSP), 2012 IEEE International Conference on
Conference_Location :
Kyoto
ISSN :
1520-6149
Print_ISBN :
978-1-4673-0045-2
Electronic_ISBN :
1520-6149
Type :
conf
DOI :
10.1109/ICASSP.2012.6289080
Filename :
6289080
Link To Document :
بازگشت