DocumentCode :
3167986
Title :
Intelligent hybrid-learning mechanism for IT2 TSK NSFLS2 composed by REFIL-BP methods
Author :
Mendez, Gerardo Maximiliano ; Hernandez, M.A.
Author_Institution :
Dept. of Electr. & Electron. Eng., Inst. Tecnol. de Nuevo Leon, Nuevo León, Mexico
fYear :
2013
fDate :
24-28 June 2013
Firstpage :
1119
Lastpage :
1124
Abstract :
The proposed learning methodology based on a hybrid mechanism for training interval A2-C1 type-2 non-singleton type-2 Takagi-Sugeno-Kang fuzzy logic systems uses a recursive square-root filter to tune the type-1 consequent parameters and the steepest descent method to tune the interval type-2 antecedent parameters. This hybrid-learning algorithm changes the interval type-2 model parameters adaptively to minimize some criteria function as new information becomes available, and to match desired input-output data pairs. Its antecedent sets are type-2 fuzzy sets, its consequent sets are type-1 fuzzy sets, and its inputs are interval type-2 non-singleton fuzzy numbers with uncertain standard deviations. As reported in the literature, the performance indices of hybrid models have proved to be better than those of the individual training mechanisms used alone.
Keywords :
fuzzy logic; fuzzy set theory; gradient methods; learning (artificial intelligence); number theory; recursive filters; IT2 TSK NSFLS2; REFIL-BP method; criteria function minimization; hybrid-learning algorithm; input-output data pair; intelligent hybrid-learning mechanism; interval A2-C1 type-2 nonsingleton type-2 Takagi-Sugeno-Kang fuzzy logic system; interval type-2 antecedent parameter tuning; interval type-2 non-singleton fuzzy numbers; learning method; performance index; recursive square-root filter; standard deviation; steepest descent method; type-1 consequent parameter tuning; type-1 fuzzy sets; type-2 fuzzy sets; Equations; Fuzzy logic; Fuzzy sets; Mathematical model; Strips; Temperature measurement; Training;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), 2013 Joint
Conference_Location :
Edmonton, AB
Type :
conf
DOI :
10.1109/IFSA-NAFIPS.2013.6608557
Filename :
6608557
Link To Document :
بازگشت