Title :
A matrix sign function framework for robust stability analysis and parameter-dependent Lyapunov and Riccati equalities
Author :
Guerra, J. ; Yagoubi, Mohamed ; Chevrel, Ph
Author_Institution :
Inst. de Rech. en Commun. et Cybernetique de Nantes, LUNAM Univ., Nantes, France
Abstract :
This paper presents a new framework to deal with robust stability analysis for time-invariant parameter-dependent systems. It hinges upon two results: -the matrix sign function integral definition. -A particular representation of parameter-dependent matrices with negative and positive power series with respect to parameters. Exact solutions to parameter-dependent Lyapunov and Riccati equalities are derived. Several didactic examples are given throughout the paper to prove the validity of the proposed results.
Keywords :
Lyapunov matrix equations; Riccati equations; robust control; Riccati equalities; matrix sign function framework; matrix sign function integral definition; parameter-dependent Lyapunov equalities; parameter-dependent matrix; robust stability analysis; time-invariant parameter-dependent system; Eigenvalues and eigenfunctions; Fasteners; Lyapunov methods; Mathematical model; Riccati equations; Robust stability;
Conference_Titel :
Decision and Control (CDC), 2012 IEEE 51st Annual Conference on
Conference_Location :
Maui, HI
Print_ISBN :
978-1-4673-2065-8
Electronic_ISBN :
0743-1546
DOI :
10.1109/CDC.2012.6426373