Title :
Nonlinear dynamics isolated by delaunay triangulation criteria
Author :
Lindgren, David ; Ljung, Lennart
Author_Institution :
Div. of Autom. Control, Linkoping Univ., Sweden
Abstract :
Inspired by an idea by Q. Zhang, we show that Delaunay triangulation of data points sampled from a system with an additive nonlinearity gives a criterion by which a linear projection can be found that isolates the nonlinear dependence, leaving out the linear one. This isolation means the nonlinear modeling can be confined to a regressor space of lower dimensionality, which in turn means over-parameterization can be avoided. Monte Carlo simulations indicate that a particular criterion built on triangle asymmetries has a minimum that coincides with the sampled system nonlinear part. The criterion is however complex to compute and non-convex, which makes it difficult to optimize globally.
Keywords :
Monte Carlo methods; mesh generation; nonlinear dynamical systems; regression analysis; Delaunay triangulation criteria; Monte Carlo simulations; additive nonlinearity; data points; linear projection; nonlinear dynamics; nonlinear modeling; regressor space; triangle asymmetries; Automatic control; Councils; Differential equations; Nonlinear dynamical systems; Sampling methods; Stacking;
Conference_Titel :
Decision and Control, 2004. CDC. 43rd IEEE Conference on
Print_ISBN :
0-7803-8682-5
DOI :
10.1109/CDC.2004.1429340