DocumentCode :
3175141
Title :
Discrete Clebsch optimal control
Author :
Nordkvist, N. ; Crouch, P.E. ; Bloch, Anthony M.
Author_Institution :
Math. & Sci. Div., Leeward Community Coll., Pearl City, HI, USA
fYear :
2012
fDate :
10-13 Dec. 2012
Firstpage :
6424
Lastpage :
6429
Abstract :
In this paper we analyze a class of discrete optimal control problems. These systems are discretizations of a class of optimal control problems defined on invariant submanifolds which we denote embedded optimal control problems. We analyze a particular subset of these called discrete Clebsch optimal control problems where the invariant manifolds are group orbits. The generating Hamiltonian equations for such systems are analyzed. The analysis provides a large class of geometric integrators for mechanical systems. We apply the theory to two example systems: mechanical systems on matrix Lie groups and mechanical systems on the n-sphere.
Keywords :
Lie algebras; Lie groups; discrete systems; optimal control; Hamiltonian equation; discrete Clebsch optimal control; geometric integrator; group orbits; invariant submanifold; matrix Lie group; mechanical system; n-sphere; Cost function; Equations; Manifolds; Mathematical model; Mechanical systems; Optimal control; Orbits;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Decision and Control (CDC), 2012 IEEE 51st Annual Conference on
Conference_Location :
Maui, HI
ISSN :
0743-1546
Print_ISBN :
978-1-4673-2065-8
Electronic_ISBN :
0743-1546
Type :
conf
DOI :
10.1109/CDC.2012.6426604
Filename :
6426604
Link To Document :
بازگشت